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corresponding to two-element partitions [(N/2) + S, (N/2) - S] of N). These 
tabulated elements correspond to the elements (pN), for p - (1 )N - 1, of 
the tranisposition class of SN, for N = 2(1)9. The dimension of such a representa- 
tion is the quotient of (2S + 1) (N!) by [(N/2) + S + 1]![(N/2) - S]!. When N 
is as large as 9 this number can be quite large; for example, the dimension of the 
representation corresponding to N = 9, S = a is 48, so that the corresponding 
matrices involve 2304 elements. Since the square of a transposition is the identity 
permutation, the matrices corresponding to a transposition are symmetric, and 
it seems uselessly lavish to ignore this fact in printing the tables. 

The underlying calculations were performed on an IBM 1620 in the Statistical 
Laboratory and Computing Center at the University of Oregon and on an IBM 
709 in the Pacific Northwest Research Computer Laboratory at the University of 
Washington. 

Following an introductory description of the theory of molecular structure 
using representation matrices and a discussion of the construction of such matrices, 
the author appends a list of errata in the smaller tables of Yamanouchi [1], Inui & 
Yanagawa [2], and Hamermesh [3]. Also included is a list of 11 references. 

A brief description of these tables has been published by the author [4]. 
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This report contains IOD tables of the Jacobi elliptic functions am (4, k), 
sn (u, 1X), cn (u, k), and dn (u, k), as well as the elliptic integral E (am (u), k) for 
k2 = 0 (0.01)0.99, u = 0 (0.01)K (c) and for I) = 1, U = 0 (0.01)3.69. Here, as is 
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conventional, u represents F (4), k), the incomplete elliptic integral of the first 
kind in Legendre's form, and O is the amplitude function, am (u, k). 

The integral E (am (u), k) as here tabulated is a by-product of a concurrent 
calculation of the Jacobi zeta function, defined by the relation 

Z(u, k) = E(am(u), k )- (k) U 

where K(k) and E(k) are the complete elliptic integrals of the first and second 
kinds, respectively. The integral K (k) and the ratio E (k)/K (k) are also given to 
lOD fork2 = 0 (0.01)0.99. 

These tables were calculated on an IBM 7094 computer system, using a sub- 
routine based on the descending Landen transformation (also known as the Gauss 
transformation). 

In addition to this information concerning the calculation of the tables, the 
authors include the definitions of the tabulated functions and a summary of their 
various properties. 

This set of tables of the Jacobi elliptic functions is the most extensive compiled 
to date. A relatively inaccessible table prepared by the staff of the Project for Com- 
putation of Mathematical Tables [I ] gave sn u, cn u, dn u to 15D for k2 = 0 (0.01)1, 
u/K = 0.01, 0.1 (0.1)1. The well-known tables of Milne-Thomson [2] give only 
5D values of these functions, over a much more restricted set of values of the argu- 
ments than the tables under review. It may also be noted here that the 12D tables 
of Spenceley & Spenceley [3], on the other hand, are arranged with the modular 
angle and the ratio u/K as parameters. 

J.w.w. 
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These tables, in the well-known series under the general editorship of V. A. 
Ditkin, were produced by collaboration between the Computing Center of the 
Academy of Sciences of the USSR and the Computing Center of the Latvian State 
University. The functions tabulated are connected with solutions of the hypergeo- 
metric equation 

zy" + (y -z)y' -y = 0, 

where we follow the authors in using /, rather than the more usual a, for the first 
(or numerator) parameter. Much of the introductory text relates to the case in 
which y is any positive integer k, but the tables relate entirely to the case -y = k = 2, 
to which we shall confine ourselves. 


